13,172 research outputs found

    Weak lensing evidence for a filament between A222/A223

    Full text link
    We present a weak lensing analysis and comparison to optical and X-ray maps of the close pair of massive clusters A222/223. Indications for a filamentary connection between the clusters are found and discussed.Comment: 6 pages, 1 figure. To appear in Proc. IAU Colloquium 195: Outskirts of Galaxy Clusters - Intense Life in the Suburbs. Version with higher resolution available at http://www.astro.uni-bonn.de/~dietrich/torino_proc.ps.g

    GaBoDS: The Garching-Bonn Deep Survey VIII. Lyman-break galaxies in the ESO Deep Public Survey

    Get PDF
    Aims. The clustering properties of a large sample of U-dropouts are investigated and compared to very precise results for B-dropouts from other studies to identify a possible evolution from z=4 to z=3. Methods. A population of ~8800 candidates for star-forming galaxies at z=3 is selected via the well-known Lyman-break technique from a large optical multicolour survey (the ESO Deep Public Survey). The selection efficiency, contamination rate, and redshift distribution of this population are investigated by means of extensive simulations. Photometric redshifts are estimated for every Lyman-break galaxy (LBG) candidate from its UBVRI photometry yielding an empirical redshift distribution. The measured angular correlation function is deprojected and the resulting spatial correlation lengths and slopes of the correlation function of different subsamples are compared to previous studies. Results. By fitting a simple power law to the correlation function we do not see an evolution in the correlation length and the slope from other studies at z=4 to our study at z=3. In particular, the dependence of the slope on UV-luminosity similar to that recently detected for a sample of B-dropouts is confirmed also for our U-dropouts. For the first time number statistics for U-dropouts are sufficient to clearly detect a departure from a pure power law on small scales down to ~2" reported by other groups for B-dropouts.Comment: 10 pages, 11 figures, accepted by A&A, full resolution version available at http://www.astro.uni-bonn.de/~hendrik/5880.pd

    First-order layering and critical wetting transitions in non-additive hard sphere mixtures

    Full text link
    Using fundamental-measure density functional theory we investigate entropic wetting in an asymmetric binary mixture of hard spheres with positive non-additivity. We consider a general planar hard wall, where preferential adsorption is induced by a difference in closest approach of the different species and the wall. Close to bulk fluid-fluid coexistence the phase rich in the minority component adsorbs either through a series of first-order layering transitions, where an increasing number of liquid layers adsorbs sequentially, or via a critical wetting transition, where a thick film grows continuously.Comment: 4 pages, 4 figure

    Quantifying Tensions between CMB and Distance Datasets in Models with Free Curvature or Lensing Amplitude

    Get PDF
    Recent measurements of the Cosmic Microwave Background (CMB) by the Planck Collaboration have produced arguably the most powerful observational evidence in support of the standard model of cosmology, i.e. the spatially flat Λ\LambdaCDM paradigm. In this work, we perform model selection tests to examine whether the base CMB temperature and large scale polarization anisotropy data from Planck 2015 (P15) prefer any of eight commonly used one-parameter model extensions with respect to flat Λ\LambdaCDM. We find a clear preference for models with free curvature, ΩK\Omega_\mathrm{K}, or free amplitude of the CMB lensing potential, ALA_\mathrm{L}. We also further develop statistical tools to measure tension between datasets. We use a Gaussianization scheme to compute tensions directly from the posterior samples using an entropy-based method, the surprise, as well as a calibrated evidence ratio presented here for the first time. We then proceed to investigate the consistency between the base P15~CMB data and six other CMB and distance datasets. In flat Λ\LambdaCDM we find a 4.8σ4.8\sigma tension between the base P15~CMB data and a distance ladder measurement, whereas the former are consistent with the other datasets. In the curved Λ\LambdaCDM model we find significant tensions in most of the cases, arising from the well-known low power of the low-\ell multipoles of the CMB data. In the flat Λ\LambdaCDM +AL+A_\mathrm{L} model, however, all datasets are consistent with the base P15~CMB observations except for the CMB lensing measurement, which remains in significant tension. This tension is driven by the increased power of the CMB lensing potential derived from the base P15~CMB constraints in both models, pointing at either potentially unresolved systematic effects or the need for new physics beyond the standard flat Λ\LambdaCDM model.Comment: 16 pages, 8 figures, 6 table

    Effects of boundary conditions on the critical spanning probability

    Full text link
    The fractions of samples spanning a lattice at its percolation threshold are found by computer simulation of random site-percolation in two- and three-dimensional hypercubic lattices using different boundary conditions. As a byproduct we find pc=0.311605(5)p_c = 0.311605(5) in the cubic lattice.Comment: 8 pages Latex, To appear in Int. J. Mod. Phys.

    Pearling instability of nanoscale fluid flow confined to a chemical channel

    Full text link
    We investigate the flow of a nano-scale incompressible ridge of low-volatility liquid along a "chemical channel": a long, straight, and completely wetting stripe embedded in a planar substrate, and sandwiched between two extended less wetting solid regions. Molecular dynamics simulations, a simple long-wavelength approximation, and a full stability analysis based on the Stokes equations are used, and give qualitatively consistent results. While thin liquid ridges are stable both statically and during flow, a (linear) pearling instability develops if the thickness of the ridge exceeds half of the width of the channel. In the flowing case periodic bulges propagate along the channel and subsequently merge due to nonlinear effects. However, the ridge does not break up even when the flow is unstable, and the qualitative behavior is unchanged even when the fluid can spill over onto a partially wetting exterior solid region.Comment: 17 pages, 12 figures, submitted to Physics of Fluids, fixed equation numbering after Eq. (17

    High Redshift Quasars and Star Formation in the Early Universe

    Full text link
    In order to derive information on the star formation history in the early universe we observed 6 high-redshift (z=3.4) quasars in the near-infrared to measure the relative iron and \mgii emission strengths. A detailed comparison of the resulting spectra with those of low-redshift quasars show essentially the same FeII/MgII emission ratios and very similar continuum and line spectral properties, indicating a lack of evolution of the relative iron to magnesium abundance of the gas since z=3.4 in bright quasars. On the basis of current chemical evolution scenarios of galaxies, where magnesium is produced in massive stars ending in type II SNe, while iron is formed predominantly in SNe of type Ia with a delay of ~1 Gyr and assuming as cosmological parameters H_o = 72 km/s Mpc, Omega_M = 0.3, and Omega_Lambda = 0.7$, we conclude that major star formation activity in the host galaxies of our z=3.4 quasars must have started already at an epoch corresponding to z_f ~= 10, when the age of the universe was less than 0.5 Gyrs.Comment: 29 pages, 5 figures, ApJ in pres

    Implications of Quasar Black Hole Masses at High Redshifts

    Full text link
    We investigated a sample of 15 luminous high-redshift quasars (3.3 < z < 5.1) to measure the mass of their super-massive black holes (SMBH) and compare, for the first time, results based on CIV, MgII, and Hbeta emission lines at high-redshifts. Assuming gravitationally bound orbits as dominant broad-line region gas motion, we determine black hole masses in the range of M_bh = 2 times 10^8 M_sun up to M_bh = 4 times 10^10 M_sun. While the black hole mass estimates based on CIV and Hbeta agree well, MgII typically indicates a factor of 5×\sim 5 \times lower SMBH masses. A flatter slope of the Hbeta radius - luminosity relation, a possibly steeper slope of the MgII radius - luminosity relation, and a slightly larger radius of the MgII BLR than for Hbeta could relax the discrepancy. In spite of these uncertainties, the CIV, MgII, and Hbeta emission lines consistently indicate super-massive black hole masses of several times 10^9 M_sun at redshifts up to z = 5.1. Assuming logarithmic growth by spherical accretion with a mass to energy conversion efficiency of epsilon = 0.1 and an Eddington ratio L_bol / L_edd calculated for each quasar individually, we estimate black hole growth-times of the order of several ~100 Myr which are smaller than the age of the universe at the corresponding redshift. Assuming high-mass seed black holes (M_bh^seed = 10^3 to 10^5 M_sun) the SMBHs in the z = 3.5 quasars began to grow at redshifts z > 4, while for the quasars with z > 4.5 they started at z = 6 to 10. These estimated time scales for forming SMBHs at high redshifts, together with previous studies indicating high quasar metallicities, suggest that the main SMBH growth phase occurs roughly contemporaneously with a period of violent and extensive star formation in proto-galactic nuclei.Comment: 26 pages, 4 figures. ApJ, accepted, Vol.611 (Aug20
    corecore